Auxin signaling in Arabidopsis leaf vascular development.

نویسندگان

  • Jim Mattsson
  • Wenzislava Ckurshumova
  • Thomas Berleth
چکیده

A number of observations have implicated auxin in the formation of vascular tissues in plant organs. These include vascular strand formation in response to local auxin application, the effects of impaired auxin transport on vascular patterns and suggestive phenotypes of Arabidopsis auxin response mutants. In this study, we have used molecular markers to visualize auxin response patterns in developing Arabidopsis leaves as well as Arabidopsis mutants and transgenic plants to trace pathways of auxin signal transduction controlling the expression of early procambial genes. We show that in young Arabidopsis leaf primordia, molecular auxin response patterns presage sites of procambial differentiation. This is the case not only in normal development but also upon experimental manipulation of auxin transport suggesting that local auxin signals are instrumental in patterning Arabidopsis leaf vasculature. We further found that the activity of the Arabidopsis gene MONOPTEROS, which is required for proper vascular differentiation, is also essential in a spectrum of auxin responses, which include the regulation of rapidly auxin-inducible AUX/IAA genes, and discovered the tissue-specific vascular expression profile of the class I homeodomain-leucine zipper gene, AtHB20. Interestingly, MONOPTEROS activity is a limiting factor in the expression of AtHB8 and AtHB20, two genes encoding transcriptional regulators expressed early in procambial development. Our observations connect general auxin signaling with early controls of vascular differentiation and suggest molecular mechanisms for auxin signaling in patterned cell differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

incurvata13, a Novel Allele of AUXIN RESISTANT6, Reveals a Specific Role for Auxin and the SCF Complex in Arabidopsis Embryogenesis, Vascular Specification, and Leaf Flatness1[W][OA]

Auxin plays a pivotal role in plant development by modulating the activity of SCF ubiquitin ligase complexes. Here, we positionally cloned Arabidopsis (Arabidopsis thaliana) incurvata13 (icu13), a mutation that causes leaf hyponasty and reduces leaf venation pattern complexity and auxin responsiveness. We found that icu13 is a novel recessive allele of AUXIN RESISTANT6 (AXR6), which encodes CUL...

متن کامل

incurvata13, a novel allele of AUXIN RESISTANT6, reveals a specific role for auxin and the SCF complex in Arabidopsis embryogenesis, vascular specification, and leaf flatness.

Auxin plays a pivotal role in plant development by modulating the activity of SCF ubiquitin ligase complexes. Here, we positionally cloned Arabidopsis (Arabidopsis thaliana) incurvata13 (icu13), a mutation that causes leaf hyponasty and reduces leaf venation pattern complexity and auxin responsiveness. We found that icu13 is a novel recessive allele of AUXIN RESISTANT6 (AXR6), which encodes CUL...

متن کامل

Responses of plant vascular systems to auxin transport inhibition.

To assess the role of auxin flows in plant vascular patterning, the development of vascular systems under conditions of inhibited auxin transport was analyzed. In Arabidopsis, nearly identical responses evoked by three auxin transport inhibitor substances revealed an enormous plasticity of the vascular pattern and suggest an involvement of auxin flows in determining the sites of vascular differ...

متن کامل

Alteration in Auxin Homeostasis and Signaling by Overexpression Of PINOID Kinase Causes Leaf Growth Defects in Arabidopsis thaliana

In plants many developmental processes are regulated by auxin and its directional transport. PINOID (PID) kinase helps to regulate this transport by influencing polar recruitment of PIN efflux proteins on the cellular membranes. We investigated how altered auxin levels affect leaf growth in Arabidopsis thaliana. Arabidopsis mutants and transgenic plants with altered PID expression levels were u...

متن کامل

Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves.

The principles underlying the formation of veins in the leaf have long intrigued developmental biologists. In Arabidopsis leaves, files of anatomically inconspicuous subepidermal cells that will elongate into vein-forming procambial cells selectively activate ATHB8 gene expression. The biological role of ATHB8 in vein formation and the molecular events that culminate in acquisition of the ATHB8...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 131 3  شماره 

صفحات  -

تاریخ انتشار 2003